

The birth of QSP?

Quantitative and Systems Pharmacology in the Post-genomic Era: New Approaches to Discovering Drugs and Understanding Therapeutic Mechanisms

An NIH White Paper by the QSP Workshop Group - October, 2011

Peter K. Sorger (co-chair), Sandra R.B. Allerheiligen (co-chair)

Darrell R. Abernethy, Russ B. Altman, Kim L. R. Brouwer, Andrea Califano, David Z. D'Argenio, Ravi Iyengar, William J. Jusko, Richard Lalonde, Douglas A. Lauffenburger, Brian Shoichet, James L. Stevens, Shankar Subramaniam, Piet Van der Graaf and Paolo Vicini

Rebecca Ward (editor)

Definitions: QSP is defined as an approach to translational medicine that combines computational and experimental methods to elucidate, validate and apply new pharmacological concepts to the development and use of small molecule and biologic drugs. QSP will provide an integrated "systems-level" approach to determining mechanisms of action of new and existing drugs in preclinical and animal models and in patients. QSP will create the knowledge needed to change complex cellular networks in a specified way with mono or combination therapy, alter the pathophysiology of disease so as to maximize therapeutic benefit and minimize toxicity and implement a "precision medicine" approach to improving the health of individual patients.

NIH Workshop follow up

Quantitative Systems
Pharmacology and Drug
Discovery: Filling the
Gaps in Current Models
of the R&D

July 26, 2017 to July 27, 2017 Bethesda North Marriott Hotel & Conference Center (Conference Room:Salon C) North Bethesda, Maryland United States

Deliverables of Workshop

- White Paper: Merged Systems Biology and Pharmacology as an approach to CNS Drug Discovery: Filling the Gaps in Current Models of the R&D Process for Neurotherapeutics: NINDS/NIH Workshop, Summer, 2017
- Recommendations regarding the utility of this approach to CNS Drug Discovery and Development
- Posted WS summary on <u>ADDS website</u> to foster collaborations between data science and systems biology PI's (post → advertisement of WS to <u>ADDS blog</u> and its participants)

Summary and Recommendations from the 2017 NIH Workshop, "Quantitative

Systems Pharmacology (QSP) and Drug Discovery: Filling the Gaps in Current Models of
the R&D Process for Neurotherapeutics"

Hugo Geerts, In Silico Biosciences, Berwyn, PA

John Wikswo, Vanderbilt University, Nashville, TN, USA

Piet van der Graaf, Certara, Canterbury, UK

Jane Bai, Center for Drug Evaluation and Research, FDA, Silver Spring, MD, USA

Chris Gaiteri, Rush Alzheimer' Disease Center, Rush University, Chicago IL, USA

David Bennett, Rush Alzheimer' Disease Center, Rush University, Chicago, IL, USA

Susan Swalley, Novartis Biomedical Research Institute, Cambridge, MA, USA

Nancy Klimas, Miami VA Healthcare, Miami, FL, USA

Suzana Petanceska, Division of Neuroscience, NIA, Bethesda, MD, USA

MaryAnn Pelleymounter, Division of Translational Research, NINDS, Bethesda, MD, USA

Pre-Conference Programming

ADVANCING QSP TOWARD PREDICTIVE DRUG DEVELOPMENT: FROM TARGETS TO TREATMENTS

WEDNESDAY, MARCH 13, 2019 | 8:00 AM - 5:00 PM

Earlier versions of Systems Pharmacology

Peter C. Preusch, PhD
Pharmacological Sciences
Training Grant Program Director
NIGMS/NIH
Department of Health and
Human Services
E-mail preuschp@nigms.nih.gov.

Integrative and Organ Systems Pharmacology:

A New Initiative from the National Institute of General Medical Sciences

April 2004 Volume 4, Issue 2

The Integrated Systems Pharmacology Affinity Group serves members who study complex systems or take a whole animal approach to understand drug action or toxicity at molecular, cellular or organ system levels. Those working across several systems, or working in systems without a defined Affinity Group, might be expected to align with Integrated Systems Pharmacology.

INNOVATION

Rescuing drug discovery: *in vivo* systems pathology and systems pharmacology

Jan van der Greef and Robert N. McBurney

NATURE REVIEWS DRUG DISCOVERY

VOLUME 4 DECEMBER 2005 961

Even earlier versions of Systems Pharmacology

Volume 39, Issue 6 March 8, 1910

THE NATURE OF OXYHÆMOGLOBIN, WITH MOLECULAR WEIGHT. ITS BARCROFT, M.A., B.Sc., Fellow of King's College, Cambridge, AND A. V. HILL, B.A., Scholar of Trinity College, Cambridge.

(From the Physiological Laboratory, Cambridge.)

¹ The responsibility for the mathematical portion of the work rests with Hill and for the oxygen estimations with Barcroft.

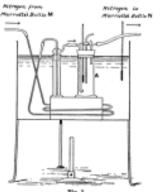
If [O₄] be the concentration of oxygen in the solution we have the equation HbO_p ≠ Hb+O_p.

Now at the surface of any bubbles of gas we have a diffusion of gas into the bubble from the solution and its rate of diffusion is proportional to $[O_n]$.

Hence if the rate of bubbling is always the same the rate of loss of oxygen from the solution is proportional at any moment to $[O_a]$.

Now let 100r/s be the percentage saturation, x the number of molecules of HbO, present (assuming the Hb to be present as molecules), a the total number of molecules present whether as Hb or HbO...

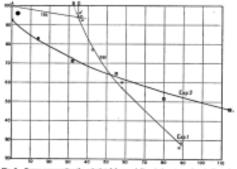
The amount of O_2 present -x + the amount in simple solution. The latter term is small compared with the first and may be neglected.

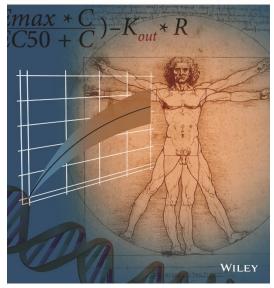

$$\therefore -\frac{dx}{dt}$$
 = the rate of loss of suggest from the solution = $\lambda(0_k)$.

Now the laws of mass action give us

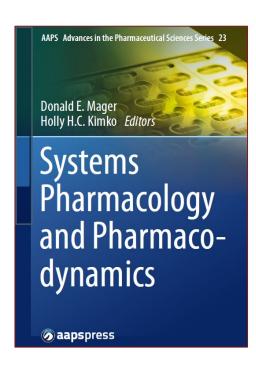
and integrating.

where the square brackets signify "between the limits of integration,"




Fig. 9. Curves representing the calculated degree of dissociation at any time in Engs. 1. and 5. Percentage extension plotted noticelly, time in missage horizontally. The points represent the actual charmations.

QSP: An established discipline


Journal

CPT: Pharmacometrics & Systems Pharmacology

2012

Book

2016

Networks and Communities

Systems Pharmacology (SP) Community

SYSTEMS PHARMACOLOGY COMMUNITY

UK

Quantitative Systems

Pharmacology

NETWORK

...and a meeting!

QSPC2020

Quantitative Systems Pharmacology Conference 2020

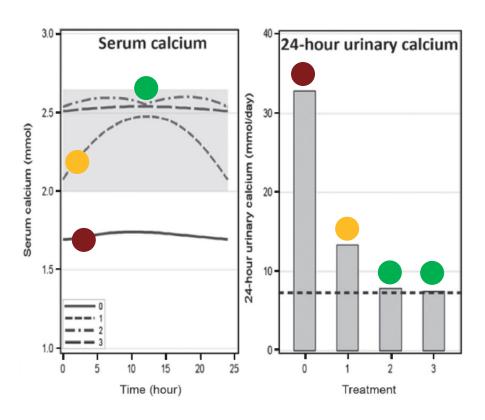
April 22-24, 2020

Leiden, The Netherlands www.qspc.eu

Stadsgehoorzaal

Application of QSP in Regulatory Review: FDA

CLINICAL PHARMACOLOGY & THERAPEUTICS


doi:10.1002/cpt.1200

Use of a Systems Pharmacology Model Based Approach Toward Dose Optimization of Parathyroid Hormone Therapy in Hypoparathyroidism

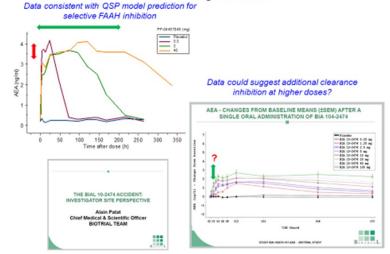
Manoj Khurana ¹, Immo Zadezensky²**, Naomi Lowy³, Dragos Roman³, Jean-Marc Guettier⁴**, Liang Li¹, Jeffry Florian³, Chandrahas G. Sahajwalla¹, Vikram Sinha⁵** and Nitin Mehrotra⁵**

- Proposed regimen
- QSP suggested regimen

Application of QSP in Regulatory Review: EMA

CLINICAL PHARMACOLOGY & THERAPEUTICS | VOLUME 104 NUMBER 5 | NOVEMBER 2018

The Role of Quantitative Systems Pharmacology in the Design of First-in-Human Trials


Piet H. van der Graaf^{1,2} and Neil Benson²

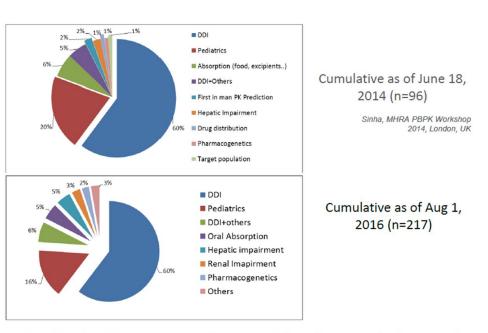
ORIGINAL ARTICLE

A Systems Pharmacology Perspective on the Clinical Development of Fatty Acid Amide Hydrolase Inhibitors for Pain

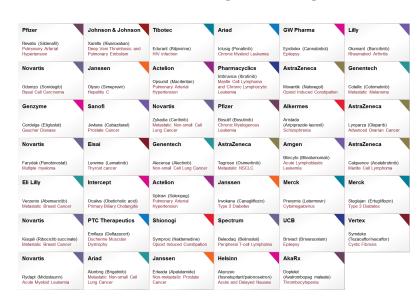
N Benson¹, E Metelkin², O Demin², GL Li³, D Nichols⁴ and PH van der Graaf⁵

Elevation of AEA observed in healthy volunteers following a single oral dose

Response to: "The Role of Quantitative Systems Pharmacology in the Design of First-in-Human Trials"


Kevin Blake¹, Milton
Bonelli¹, Stefano Ponzano¹,
Harald Enzmann², on behalf of
the European Medicines Agency
Committee for Human Medicinal
Products "First-in-Human
Guideline Drafting Group"[†]

EMA encourages the development and use of complementary mechanistic models in translational drug research, such as the present example. Guidance on novel technologies can be obtained from EMA under the form of a qualification advice or a qualification opinion (Qualification of novel methodologies for medicine development: http://www.ema.europa.eu/ema/index.jsp?curl=pages/regulation/document_listing/document_listing_000319. jsp&mid=WC0b01ac0580022bb0. Accessed 8 June 2018). Their inclusion in future guidelines will be further considered in line with increasing scientific knowledge.


Still some way to go: comparison with PBPK

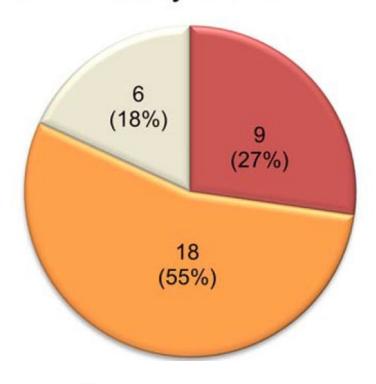
Currently ~10 FDA submissions containing QSP per year

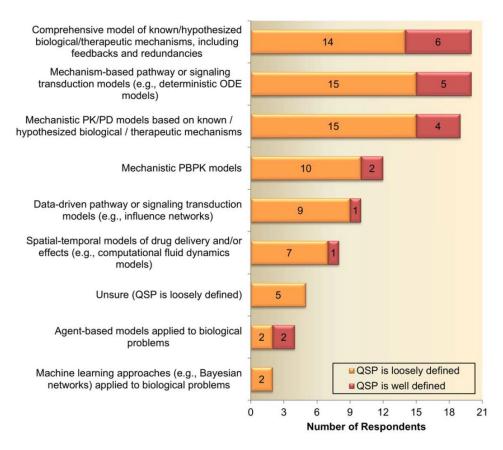
FDA submissions using PBPK modelling

41 Labels with *in-silico* substitutes for clinical data informed by Simcyp

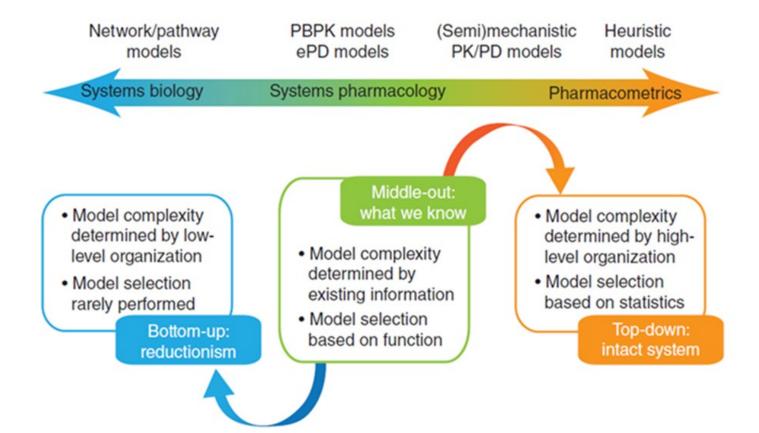
Majority related to drug-drug interactions (DDIs, ~ 60%); pediatrics ranks the second

QSP: Dose (regimen) prediction and Target validation?




QSP definition: confusion?

REVIEW

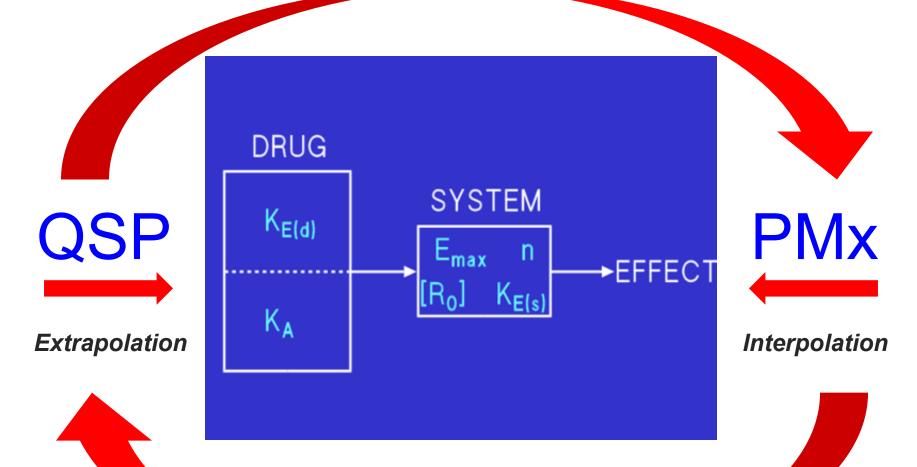

Preclinical QSP Modeling in the Pharmaceutical Industry: An IQ Consortium Survey Examining the Current Landscape

Use & Clarity of QSP

nature publishing group

PERSPECTIVES

COMMENTARIES


Systems Pharmacology for Drug Discovery and Development: Paradigm Shift or Flash in the Pan?

P Vicini¹ and PH van der Graaf^{2,3}

Systems pharmacology is an emerging approach that sets out to use quantitative concepts rooted in the syneepy between modeling and simulation on one hand and large-scale data collection and analysis on the other to investigate biological systems and design therapeutic interventions. Interest in this field has recently increased substantially, but so have perceived challenges and misunderstandings, especially related to implementation. This commentary expires the opportunities and challenges in the rapidly evolving area of systems pharmacology from a drug discovery and development perspective.

tistical regression techniques teach us that the more components a model has, the greater its explanatory power will behowever, the individual contributions of those components will become more and more difficult to discern. Systemspharmacology modes attempt to inject biological realism early in the process pharmacology modes attempt to inject biological realism early in the proposition of the protor of the proposition of the proton of

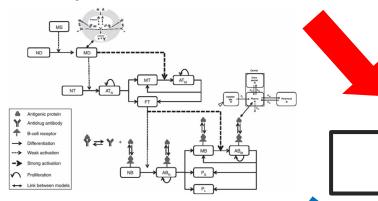
high-level, functional behavior. Systems pharmacology was defined in a recent white paper by the National Institutes of Health (NIHI) Quantitative Systems Pharmacology (QSF) workshop group? as' in approach to translational medicine that combines competitional and experimental mediods to elucidate, validate and upply racorder of the proper of the proper of the old to elucidate, validate and upply racopment and use of small molecule and biologic drugs (with the aim of) destrmining mechanisms of action of new and existing drugs in preclinical and animal models and in unitous.

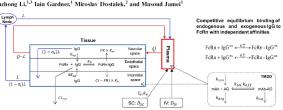
EXAMP

- Preclinical ical (dose; schedule)
- Novel combination therapy
- Biomarker identification
- Novel patient populations
- Novel indications

QSP case study: Immunogenicity (IG)

abbvie


Citation: CPT Pharmacometrics Syst. Pharmacol. (2014) 3, e134; doi:10.1038/psp.2014.31 © 2014 ASCPT All rights reserved 2163-8306/14


www.nature.com/psp

ORIGINAL ARTICLE

A Mechanistic, Multiscale Mathematical Model of Immunogenicity for Therapeutic Proteins: Part 2—Model Applications

X Chen¹, TP Hickling² and P Vicini³

IG Model

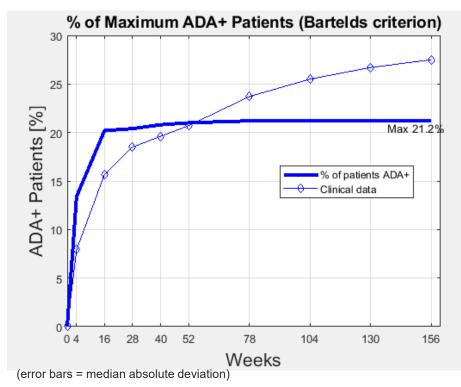
Bioinformatics predictions

Number of epitopes = 2

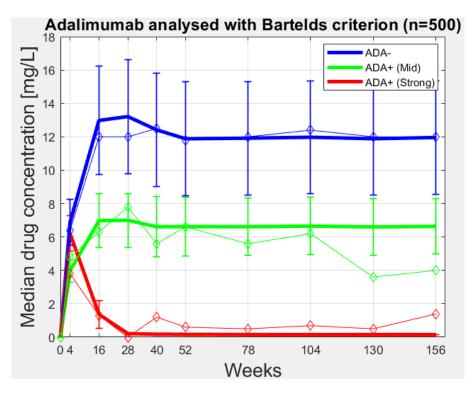
MHC Class II allele	Allele frequency (North American population)	Epitope 1 binding affinity (include BC loop region)	Epitope 2 binding affinity (include FG loop loop region)
DPA1*01:03/DPB1*02:01	0.5200	203	4000
DPA1*01/DPB1*04:01	0.2364	426	4000
DRB1*03:01	0.0689	472	4000
DRB1*11:01	0.0472	278	4000
DRB1*15:01	0.0696	447	218
DRB1*04:05	0.0231	4000	118
DRB1*07:01	0.0872	4000	161
DRB1*08:02	0.0742	4000	854
DRB1*13:02	0.0394	4000	168

IG Simulator

The AAPS Journal, Vol. 16, No. 5, September 2014 (© 2014) DOI: 10.1208/s12248-014-9640-5


Research Article

Simulation of Monoclonal Antibody Pharmacokinetics in Humans Using a Minimal Physiologically Based Model


Linzhong Li,13 Iain Gardner,1 Miroslav Dostalek,2 and Masoud Jamei1

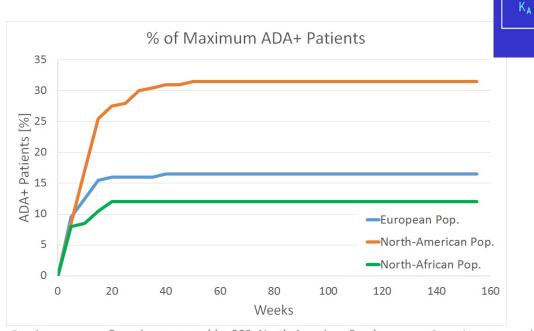
Example: Adalimumab

ADA response

Pharmacokinetics

ADA+ Cohort
ADA+ 12-100AU/ml
Strong ADA+ >100AU/ml

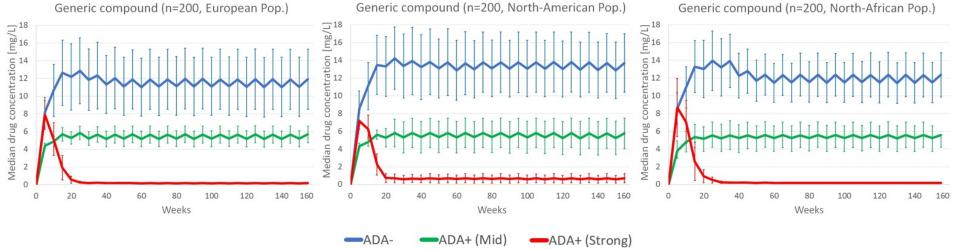
 Model
 Data


 60%
 59%

 40%
 41%

Change System

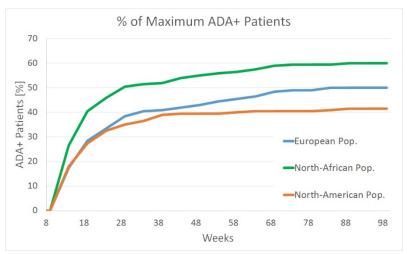
Compound X (adalimumab-like)

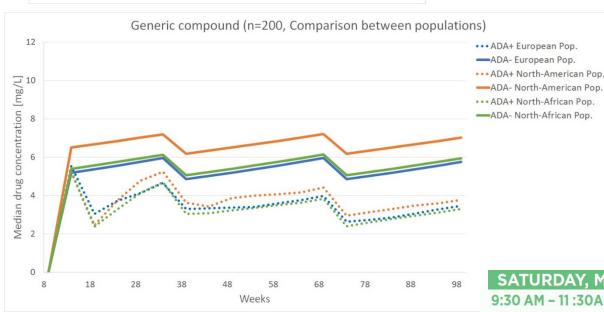

DRUG

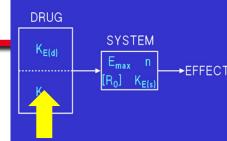
K_{E(d)}

SYSTEM

 $[R_0]$ $K_{E(s)}$


→EFFECT





Change Compound

Compound Y

9:30 AM - 11:30 AM


SYMPOSIUM

Immunogenicity in Clinical Practice and Drug Development: When is it Significant?

Applications: Extrapolation

Personalised & Precision medicine: Prediction of PK and IG for genotyped individual.

Extrapolation to larger populations. (Phase III, IV)

IG Management: Extrapolation to different dosing regimes.

Extrapolation to paediatric population or individual children.

Extrapolation to disease population.

Extrapolation to age group.

Prediction of the effect of co-therapy

Some additional Points for Consideration

Open Source?

Experimentation?

Pharmacometrics ←→ QSP?

•

Open Source?

Reproducibility of Quantitative Systems Pharmacology (QSP) Models: Current Challenges and Future Opportunities

Daniel C. Kirouac^{1,3,*}, Brian Cicali^{2,3} and Stephan Schmidt^{2,3}

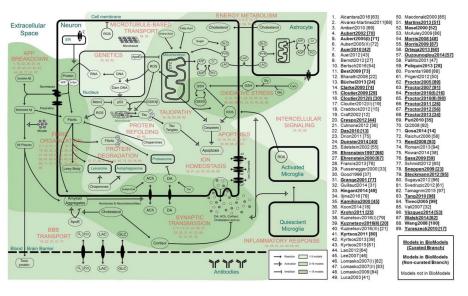
ABSTRACT

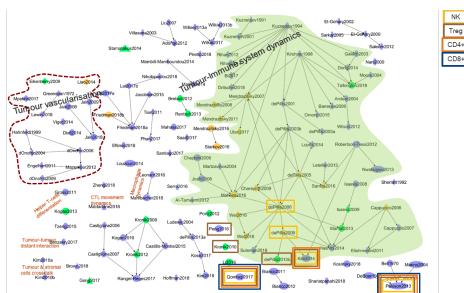
Provision of model code is required for publication in *CPT:PSP*, enabling QSP model *availability*. A searchable repository of published QSP models would enhance model *accessibility*. We assess the feasibility of establishing such a resource, based on 18 QSP models published in this journal. However, due to the diversity of software platforms (9), file formats and functionality, such a resource is pre-mature. We evaluated 12 of the models (those coded in R, PK-Sim/MOBI and Matlab) for functionality. Of the 12, only 4 were executable in that figures from the associated manuscript could be generated via a 'run' script. Many researchers are aware of the challenges involved in re-purposing published models. We offer some ideas to enable model sharing going forward, including annotation guidelines, standardized formats, and inclusion of 'run' scripts. If practitioners can agree to some minimum standards for provision of model code, this would accelerate model re-use and extension.

Open Science

- Sharing knowledge/resources/data
- Consensus on science and common tools/standards
- Engaging pharma, academics and regulators through publication & education
- Rigorous approach to IT and QA: interoperable, future proof and meeting regulatory requirements
- Ability to integrate confidential data/knowledge/models in a seamless and incremental manner

13 December 2018 EMA/CHMP/458101/2016 Committee for Medicinal Products for Human Use (CHMP)


Guideline on the reporting of physiologically based pharmacokinetic (PBPK) modelling and simulation

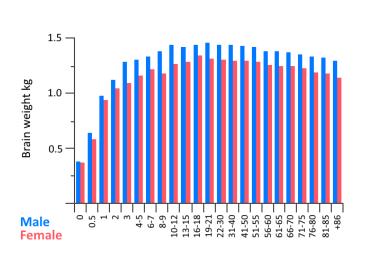

Open Science example: literature mining

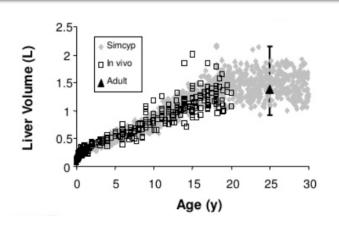
Neurodegeneration

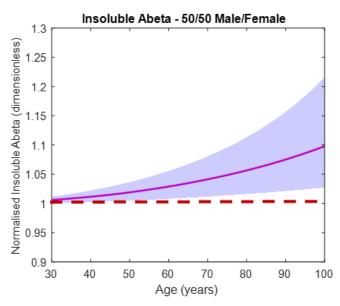
Immuno-Oncology

REVIEW

The Impact of Mathematical Modeling in Understanding the Mechanisms Underlying Neurodegeneration: Evolving Dimensions and Future Directions


A Lloret-Villas¹, TM Varusai¹, N Juty¹, C Laibe¹, N Le Novère², H Hermjakob¹ and V Chelliah¹*


PAGE 2019



Open Science example: organ size

- Impact of variable organ size (age, gender etc.) well-established in PBPK
- Similar scholarship needs to be developed for QSP
- Example: Brain volume in models of AD

Open Science example: target expression

ORIGINAL ARTICLE

Application of a systems pharmacology model for translational prediction of hERG-mediated QTc prolongation

Verena Gotta^{1,2}, Zhiyi Yu³, Frank Cools⁴, Karel van Ammel⁴, David J. Gallacher⁴, Sandra A. G. Visser⁵, Frederick Sannajust⁶, Pierre Morissette⁶, Meindert Danhof¹ & Piet H. van der Graaf^{1,7}

1.2. External evaluation of translational predictions (sotalol & moxifloxacin)

Good clinical predictions in adults and children were obtained (<5-10 ms prediction discrepancy from clinical regression model until ΔQTc of 35 ms). However, QTc- effects in neonates were under-predicted (>20 ms prediction discrepancy).

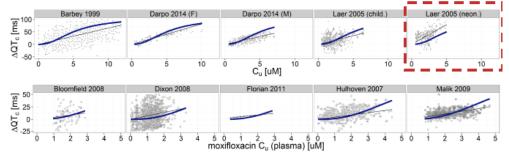


Fig.2: Translational predictions from preclinical data and system-specific scaling parameters only (blue lines) are contrasted with reported clinical ΔQTc from indicated references (grey dots: digitized observations. black lines: predictions from respective clinical regression model).

Developmental changes in human dopamine neurotransmission: cortical receptors and terminators

Debora A Rothmond^{1,2,3*}, Cynthia S Weickert^{1,2,3} and Maree J Webster ⁴

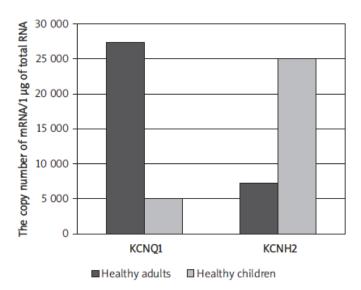
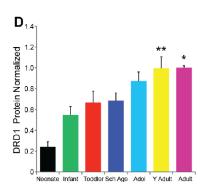
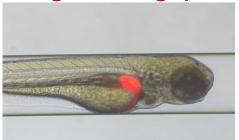



Figure 3. Comparison of KCNQ1 and KCNH2 mRNA levels between healthy adults and healthy children. Results are expressed as copy numbers per 1 μ g of total RNA

Arch Med Sci 2011; 7, 6: 941-947 DOI: 10.5114/AOMS.2011.26604 Copyright © 2011 Termedia & Banach


Experimentation?

Quantitative and Systems Pharmacology in the Post-genomic Era: New Approaches to Discovering Drugs and Understanding Therapeutic Mechanisms

An NIH White Paper by the QSP Workshop Group - October, 2011

Definitions: QSP is defined as an approach to translational medicine that combines computational and experimental methods to elucidate, validate and apply new pharmacological concepts to the development and use of small molecule and biologic drugs. QSP will provide an integrated "systems-level" approach to determining mechanisms of action of new and existing drugs in preclinical and animal models and in patients. QSP will create the knowledge needed to change complex cellular networks in a specified way with mono or combination therapy, alter the pathophysiology of disease so as to maximize therapeutic benefit and minimize toxicity and implement a "precision medicine" approach to improving the health of individual patients.

High Throughput

High Content

Fingerprints of CNS drug effects: a plasma neuroendocrine reflection of D_2 receptor activation using multi-biomarker pharmacokinetic/pharmacodynamic modelling

Correspondence Elizabeth CM de Lange, Division of Systems Biomedicine and Pharmacology, Leiden Academic Center for Drug Research, Leiden University, Leiden, The Netherlands. E-mail: ecmdelange@lacdr.leiden.univ.nl

Willem J van den Brink¹, Dirk-Jan van den Berg¹, Floor E M Bonsel¹, Robin Hartman¹, Yin-Cheong Wong¹

CERTARA

Cybernetics, Redux: An Outside-In Strategy for Unraveling Cellular Function

Mohan Malleshaiah¹ and Jeremy Gunawardena¹.*
¹Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA

http://dx.doi.org/10.1016/j.devcel.2015.12.025 2 Developmental Cell 36, January 11, 2016@2016 Elsevier Inc.

Preclinical QSP Modeling in the Pharmaceutical Industry: An IQ Consortium Survey Examining the Current Landscape

This lack of dedicated experimental support is currently a gap within most companies and may hinder the successful implementation of QSP models, especially when such mod-

British Journal of Pharmacology (2018) •• •• 1

RESEARCH PAPER

Quantitative systems pharmacology analysis of drug combination and scaling to humans: the interaction between noradrenaline and vasopressin in vasoconstriction

Correspondence Piet H van der Graaf, Certara QSP, Canterbury Innovation Centre, Unit 43, University Road, Canterbury CT2 7FG, UK. E-mail: piet@certara.com

Received 18 May 2018; Accepted 27 May 2018

Anyue Yin 1,2 O, Akihiro Yamada 1,3, Wiro B Stam 4, Johan G C van Hasselt 1 and Piet H van der Graaf 1,5

$$A_1 + R_1 \longrightarrow A_1R_1 \qquad n_1$$

$$M \longrightarrow B$$

$$A_2 + R_2 \longrightarrow A_2R_2 \qquad n_2$$

Slope	
N _H (observed)	2.3-2.7
$N_1 \& N_2$	~0.5-0.7
N_3	4

Pharmacometrics $\leftarrow \rightarrow$ QSP?

EDITORIAL

Pharmacometrics and/or Systems Pharmacology

Piet H. van der Graaf^{1,2,*} COMMENTARY **QSP Versus the Rest: Let the Competition Commence! PERSPECTIVE** Hitesh B. Mistry^{1,2} Benchmarking QSP Models Against Simple Models: **PERSPECTIVE** A Path to Improved Comprehension and Predictive **Performance Quantitative Systems Pharmacology and Empirical** Models: Friends or Foes? Andrew M. Stein1* and Michael Looby2 Neil Benson^{1,*}

My model is better than yours

Use of a Systems Pharmacology Model Based Approach Toward Dose Optimization of Parathyroid Hormone Therapy in Hypoparathyroidism

Manoj Khurana¹, Immo Zadezensky²·*, Naomi Lowy³, Dragos Roman³, Jean-Marc Guettier⁴·*, Liang Li¹, Jeffry Florian³, Chandrahas G. Sahajwalla¹, Vikram Sinha⁵·* and Nitin Mehrotra⁵·*

pharmacodynamics (PDs) of PTH dose and dosing regimen. Although other modeling approaches may be feasible, in this specific case, QSP model-based simulations fulfilled the information gap to support recommendations of this postmarketing trial.

Pharmacometrics ←→ QSP?

Integrated Pharmacometrics and Systems Pharmacology (iPSP)

PERSPECTIVE

Perspective on the State of Pharmacometrics and Systems Pharmacology Integration

Mirjam N. Trame¹, Matthew Riggs², Konstantinos Biliouris¹, Dhananjay Marathe³, Jerome Mettetal⁴, Teun M. Post^{5,6}, Matthew L. Rizk⁷. Sandra A. G. Visser⁸ and Cynthia J. Musante⁹*

228 PSP papers 2012-2017: **19% iPSP**

Linking QSP to Clinical Endpoints

Citation: CPT: Pharmacometrics & Systems Pharmacology (2012) 1, e11; doi:10.1038/psp.2012.10 © 2012 ASCPT All rights reserved 2163-8306/12

Integrated Pharmacometrics and Systems Pharmacology Model-Based Analyses to Guide GnRH Receptor Modulator Development for Management of Endometriosis

MM Riggs¹, M Bennetts², PH van der Graaf² and SW Martin³

Model Reduction

Snowden et al. BMC Systems Biology (2017) 11:17 DOI 10.1186/s12918-017-0397-1

BMC Systems Biology

METHODOLOGY ARTICLE

Open Acces

A combined model reduction algorithm for controlled biochemical systems

Thomas J. Snowden^{1,2} D, Piet H. van der Graaf^{3,2} and Marcus J. Tindall^{1,4*}

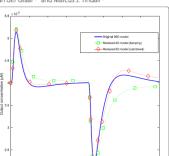
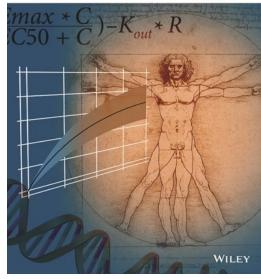



Fig. 6 Timecourses of the output from the original 99-dimensional and the reduced 8-dimensional systems. This plot emphasies the fact that the reduced model is designed to remain valid for any reasonable change in input. The system starts by being affected by an agonist that increases the rate of EGF binding by 25% for 50 minutes, at this point the input flips to an antagonist decreasing the rate of EGF binding by 50% and runs for the same time period. At any given time point the error between the original and reduced model exceeds no more than 5%

CPT: PSP 2.0

CPT: Pharmacometrics & Systems Pharmacology

EDITORIAL

CPT: Pharmacometrics & Systems Pharmacology 2.0

France Mentré^{1,*}

Backups

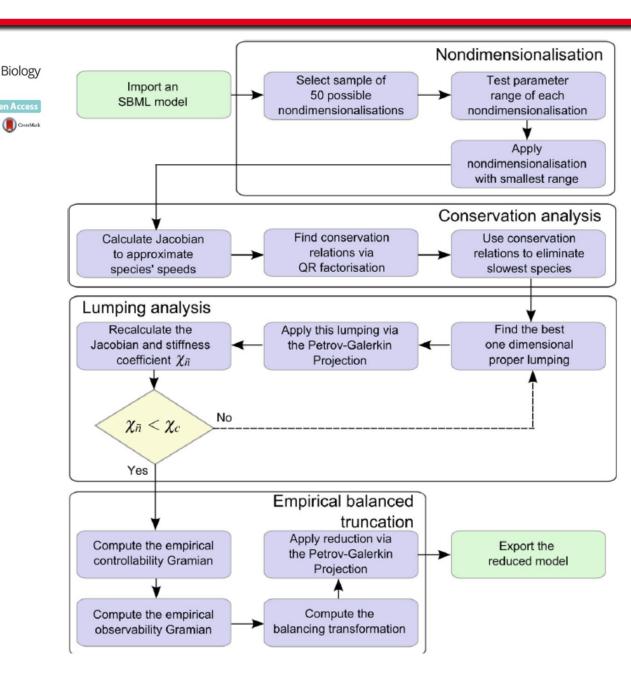
PBPK guidelines a template for QSP?

13 December 2018 EMA/CHMP/458101/2016 Committee for Medicinal Products for Human Use (CHMP)

Guideline on the reporting of physiologically based pharmacokinetic (PBPK) modelling and simulation

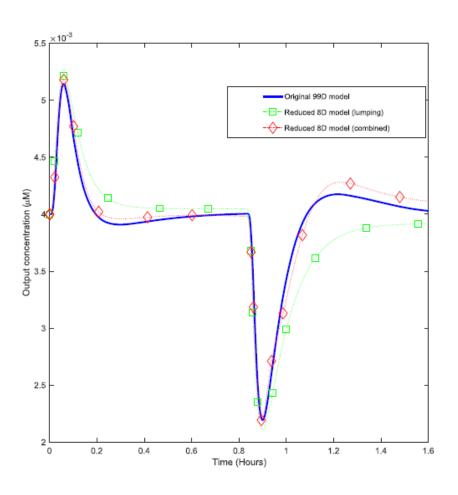
PBPK guidelines a template for QSP?

4. Reporting of PBPK modelling and simulation
4.1. Objective and regulatory purpose
4.2. Background information
4.3. Qualification
4.4. Model parameters
4.4.1. Assumptions
4.4.2. System-dependent parameters
4.4.3. Drug parameters and the drug model
4.5. Model development
4.6. Simulation of the intended scenario
4.7. Platform and drug model evaluation
4.7.1. Sensitivity analyses
4.7.2. Evaluation of the predictive performance of the drug model
4.8. Results
4.9. Discussion of the regulatory application


Model reduction

Snowden et al. BMC Systems Biology (2017) 11:17 **BMC Systems Biology** DOI 10.1186/s12918-017-0397-1

METHODOLOGY ARTICLE


A combined model reduction algorithm for controlled biochemical systems

Thomas J. Snowden^{1,2} D. Piet H. van der Graaf^{3,2} and Marcus J. Tindall^{1,4}*

NGF model reduction

Dimension	EBT error	Lumping error	Stiffness	Combined error	
75	0.76%	≈ 0%*	42658	_	
50	#	0.01%	42633	_	
25	#	0.52%	10664	_	
15	#	1.26%	7934	_	
14	#	2.21%	7934	_	
13	#	2.29%	7934	_	
12	#	1.21%	1591	_	
11	#	3.07%	236	_	
10	#	6.02%	264	2.84%	
9	#	10.96%	211	4.02%	
8	#	13.12%	43	4.32%	
7	#	14.18%	42	4.77%	
6	#	29.53%	44	13.08%	
5	#	39.03%	45	20.81%	
4	#	46.47%	212	31.09%	
3	#	54.67%	42	34.58%	
2	#	53.52%	18	41.10%	
1	#	55.73%	1	50.46%	

